
Decidability of the Theory of the Totally
Unboundedω-Layered Structure

Angelo Montanari and Gabriele Puppis
Dipartimento di Matematica e Informatica, Università di Udine
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Abstract

In this paper, we address the decision problem for a sys-
tem of monadic second-order logic interpreted over anω-
layered temporal structure devoid of both a finest layer and
a coarsest one (we call such a structure totally unbounded).
We propose an automaton-theoretic method that solves the
problem in two steps: first, we reduce the considered prob-
lem to the problem of determining, for any given Rabin tree
automaton, whether it accepts a fixed vertex-colored tree;
then, we exploit a suitable notion of tree equivalence to
reduce the latter problem to the decidable case of regular
trees.

1. Introduction

This paper addresses the decision problem for a system
of monadic second-order (MSO for short) logic interpreted
over anω-layered temporal structure devoid of both a finest
layer and a coarsest one (we call such a structure totally
unbounded and we denote it by TULS). Layered structures
have been originally proposed by Montanari et al. in [4, 5, 6]
to model finite and infinite hierarchies of time granularities.
They focus their attention on three distinct layered struc-
tures: then-layeredk-refinable structure, denoted byn-LS,
which consists of a fixed finite numbern of temporal layers
such that each time point can be refined intok time points
of the immediately finer layer, if any, and the downward
(resp. upward) unboundedk-refinableω-layered structure,
denoted by DULS (resp. UULS), which consists of an in-
finite number of arbitrarily fine (resp. coarse) layers. The
MSO theories of these structures have been shown to be ex-
pressive enough to capture meaningful temporal properties
of reactive systems (such as “P holds at all time pointskn,
with n ≥ 0”) and decidable. The decidability of the the-
ories of thek-refinablen-LS, DULS, and UULS has been
proved by reducing them to the MSO theories of one succes-
sor (S1S), of k successors (SkS), and of thek-ary systolic

tree (S1Sk), respectively. Both the DULS and the UULS
can naturally be viewed as tree structures. The DULS can
be viewed as an infinite sequence of infinitek-ary trees,
while the UULS can be seen as a completek-ary infinite
tree generated from the leaves or, equivalently, as an infi-
nite sequence of finite increasingk-ary trees [3]. The totally
unboundedk-refinableω-layered structure (TULS) can be
viewed as the composition of the DULS and the UULS.

In this paper we deal with the decision problem for the
theory of the TULS. To some extent, the solution we pro-
pose can be viewed as an extension of Carton and Thomas’
solution to the decision problem for the MSO theories of
residually ultimately periodic words [1]. We first provide
a tree-like characterization of the TULS. Taking advantage
of it, we define a non-trivial encoding of the TULS into
a vertex-colored tree that allows us to reduce the decision
problem for the TULS to the problem of determining, for
any given Rabin tree automaton, whether it accepts such a
vertex-colored tree. Finally, this latter problem is reduced
to the decidable case of regular trees by exploiting a suit-
able notion of tree equivalence [7] (we call residually reg-
ular trees those vertex-colored trees for which such a re-
duction works). Notice that, since both the DULS and the
UULS can be easily embedded into the TULS, we obtain,
as a by-product, a new uniform decidability proof for the
theories of the two structures.

2. Basic notions

MSO logics. MSO logics over graph structures are de-
fined as follows. A graph structure is defined as a tu-
pleS = (S, E1, . . . , Ek), whereS (also denotedDom(S))
is a countable set of vertices andE1, . . . , Ek are binary re-
lations defining the edge labels. Avertex-coloredgraph
is a graphS endowed with a partitionP1, . . . , Pm of
Dom(S) that defines the colors of the vertices. MSO for-
mulas are built up from a set of atoms of the formXi(xj),
Pi(xj), Pi ⊆ Pj , Ei(xj , xk), by means of the stan-
dard connectives∧ , ∨ , and¬ and quantifications over



first-order variables (which are denoted by lowercase let-
ters, e.g.,xj , xk, and interpreted as single vertices) and
second-order variables (which are denoted by uppercase
letters, e.g.,Xi, and interpreted as sets of vertices). The se-
mantics of an MSO formula is defined in the standard
way [9]. For a given formulaϕ(x1, . . . , xn, X1, . . . , Xl),
with free variables x1, . . . , xn, X1, . . . , Xl, we write
S ² ϕ[v1, . . . , vn, V1, . . . , Vl] whenever the MSO for-
mula ϕ holds in the structureS with the interpretation
v1/x1, . . . , vn/xn, V1/X1, . . . , Vl/Xl. The MSO the-
ory of a structureS, denoted byMTh(S), is the set of all
sentences that hold inS. ThusMTh(S) is said to be decid-
able iff there is an effective way to test whether a given sen-
tence holds inS or not. Furthermore, we say that an
n-ary relationR is MSO-definable inS if there is a for-
mula ϕ(x1, . . . , xn) such that (v1, . . . , vn) ∈ R iff
S ² ϕ[v1, . . . , vn].

Colored trees. K-ary m-colored treesare vertex-colored
(deterministic) graphs whose domain is a prefix-closed lan-
guage over[k], with [k] = {1, . . . , k}, and whose edge re-
lations are such that(u, v) ∈ Ei iff v = ui. Given a col-
ored treeS, we denote byS(v) the color of the vertex
v. The frontier Fr(S) of the treeS is the prefix-free lan-
guage{u ∈ Dom(S) : ∀ i ∈ [k]. ui 6∈ Dom(S)}. In this
paper, we mainly deal withfull trees, namely, those trees for
which, whenever there existsl ∈ [k] such that(u, ul) ∈ El,
then(u, ui) ∈ Ei, for everyi ∈ [k]. Though the standard
notion of full tree includes both empty trees and singleton
trees, it is convenient to exclude such cases. Apath of the
treeS is a (finite or infinite) wordu such that every finite
prefix ofu belongs toDom(S). Given a pathu of S, we de-
note byS|u the sequence of colors associated with the ver-
tices ofu. A branchis a maximal path, namely, a path which
is not a proper prefix of any element ofS. We denote the set
of all (finite or infinite) branches byBch(S).

Tree automata. According to [8], ak-ary Rabin tree
automatonover the alphabet[m] is a quadrupleM =
([n], I, E,AP), where[n] is a finite set of states,I ⊆ [n]
is a set of initial states,E ⊆ [n] × [m] × [n]k is a tran-
sition relation, andAP is a finite collection of accepting
pairs (Li, Ui) with Li, Ui ⊆ S. Given an infinite com-
plete k-ary m-colored treeS, a run of the automatonM
on S is any infinite completek-ary n-colored treeρ such
that (ρ(u),S(u), ρ(u1), . . . , ρ(uk)) ∈ E for every u ∈
Dom(ρ). ρ is said to besuccessful, andS is said to beac-
ceptedby M , if ρ(ε) ∈ I and, for every branchu and ev-
ery accepting pair(Li, Ui), we haveInf (ρ|u)∩Li = ∅ and
Inf (ρ|u) ∩ Ui 6= ∅, whereInf (α) denotes the set of ele-
ments that occur infinitely often in a sequenceα. The lan-
guageL (M) is the set of all trees accepted byM . We fur-
ther denote byImg(α) the set of elements that occur in a
sequenceα.

3. Layered structures

In this section we define (ω-)layered structures and we
explore the relationships among them. In particular, we
show that the theories of the (k-refinable) DULS and UULS
can be easily embedded into the theory of the (k-refinable)
TULS.

Definition 1. A k-refinable layered structureis a
graph Sk = (

⋃
i∈I Li, <, (↓l)l∈[k]), where I ⊆ Z,

Li = {(i, n) : n ∈ N}, < is a total order over
⋃

i∈I Li,
and, for alll ∈ [k] and all(i, n) ∈ ⋃

i∈I Li, ↓l is a func-
tion that maps(i, n) to (i + 1, kn + l − 1) (if there exists
such an element).

For all i ∈ I, Li is called alayer of the structure and,
for all l ∈ [k], ↓l is called thel-th projection function, since
it maps elements of a given layer to elements of the imme-
diately finer layer (if any). Bothn-layered andω-layered
structures have been studied in the literature; in the follow-
ing, we restrict our attention toω-layered ones. In [5], Mon-
tanari et al. investigate two meaningfulω-layered structures,
namely, thek-refinable DULS (abbreviatedDk) and thek-
refinable UULS (Uk). As already pointed out,Dk can be
seen as an infinite sequence of infinite completek-ary trees,
while Uk can be seen either as an infinitek-branching tree
generated from the leaves or as an infinite sequence of fi-
nite increasingk-trees. Formally,Dk is obtained by setting
I = N and defining< as the total order given by the pre-
order visit (for elements of the same tree) and by the linear
order of the trees (for elements belonging to different trees),
while Uk is obtained by settingI = −N and defining< as
the total order given by the in-order visit of the nodes of
the tree. In this paper, we focus our attention on a new class
of ω-layered structures, namely, thek-refinable TULS (Tk).
For anyk, Tk can be seen as the composition ofDk and
Uk. Formally,Tk is obtained by settingI = Z and defin-
ing < as a suitable total order overDom(Tk) (e.g., the total
order induced by the pre-order visit or the in-order one).

In order to systematically analyze the relationships be-
tweenTk andDk (resp.Uk), we define a couple of auxiliary
relations. With a little abuse of notation, we use the unary
relational symbolL0 to identify the elements of the layer
L0 = {(0, n) : n ∈ N} (L0 is the top layer ofDk, the bot-
tom layer ofUk, and a distinguished intermediate layer of
Tk). Furthermore, we denote by<0 (resp.+0) the order re-
lation (resp. the successor function) overL0, which is de-
fined as follows: for everyn, n′ ∈ N, (0, n) <0 (0, n′) iff
n < n′ (resp.+0((0, n)) = (0, n′) iff n′ = n + 1). (It
is well-know that<0 is MSO-definable in terms of+0.) In
Figure 1, we depict a little part ofT2, pointing out the el-
ements ofL0 by black-colored vertices and the successor
function+0 by bold arrows.

It is not difficult to show that the total order< is MSO-
definable in terms of(↓l)l∈[k] both inUk and inTk. This is
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Figure 1. The layered structure (T2, L0, +0).

not the case withDk, where< is MSO-definable in terms
of (↓l)l∈[k] and<0, or, equivalently,+0 (but notL0). More-
over, the addition of one relation amongL0, <0, and+0 to
Tk (it is easy to show that they are inter-definable inTk) al-
lows us to prove that the MSO logic over bothDk andUk

can be embedded into the MSO logic overTk (it is worth
emphasizing that the additional predicate is needed for deal-
ing with bothDk andUk, not only forDk). The details of
the proofs can be found in [7].

4. The decision problem for(Tk, L0)

In [3], the decision problems for the MSO theories of the
DULS and the UULS have been solved by reducing them to
the decision problems for theories of suitable (different) tree
structures. In the following, we deal with the decision prob-
lem for the MSO theory ofTk extended withL0, namely,
for the theory of the relational structure(Tk, L0).

As a preliminary step, we show that the MSO logic over
(Tk, L0) can be embedded into the MSO logic over a suit-
able(k +1)-ary vertex-colored tree, thus reducing the orig-
inal problem to the problem of deciding the theory of such a
colored tree. Notice that this embedding allows us to move
from the setting of layered structures to the more standard
framework of colored tree structures. The correspondence
between the two structures is established by means of a suit-
able injective functionfTk

, which maps vertices ofTk to
vertices of the infinite complete(k+1)-ary tree, henceforth
denoted by∆k+1:

fTk
((i, n)) = (k + 1) · . . . · (k + 1)︸ ︷︷ ︸

A times

·

· ( n
kA+i−1 mod k + 1) · . . . · ( n

k0 mod k + 1)︸ ︷︷ ︸
A+i times

whereA is equal todlogk(n+1)e−i, whenevern+1 ≥ ki,
and to0 otherwise. LetDTk

= fTk
(Dom(Tk)) andLTk

=
fTk

(L0). BothDTk
andLTk

are (proper) subsets of[k+1]∗.
Let us assign them the status of vertex-coloring relations
over∆k+1. In Figure2, we represent the relationsDT2 and
LT2 for the (portion of the) layered structure depicted in
Figure1. Shaded nodes represent the vertices of the domain
of (T2, L0) and black-colored nodes represent the vertices
belonging to the layerL0.
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Figure 2. The colored tree (∆3, DT2 , LT2).

The following theorem states that MSO formu-
las interpreted over (Tk, L0) can be turned into
equivalent MSO formulas interpreted over the col-
ored tree (∆k+1, DTk

, LTk
). In particular, we have (i)

(Tk, L0) ² L0[v] iff (∆k+1, DTk
, LTk

) ² LTk
[fTk

(v)],
and (ii) (Tk, L0) ² ↓1 (u, v) iff (∆k+1, DTk

, LTk
) ²

E1(fTk
(u), fTk

(v)) ∨ Ek+1(fTk
(v), fTk

(u)).

Theorem 1. For any MSO formulaϕ(x̄, X̄), there is
an MSO formulaϕ′ such that (Tk, L0) ² ϕ[v̄, V̄ ] iff
(∆k+1, DTk

, LTk
) ² ϕ′[fTk

(v̄), fTk
(V̄ )].

It is easy to see thatDTk
= [k]∗ ∪ {k + 1} ·

{k + 1}∗ · {k} · [k]∗ is a regular language of finite words
over [k + 1], and thus there exists an MSO formulaϕ(x)
such that∆k+1 ² ϕ[v] iff v ∈ DTk

, that is,DTk
is MSO-

definable in∆k+1. As for LTk
, assume, by contradiction,

that there exists an MSO formulaϕ definingLTk
in ∆k+1.

This would imply thatψ(X) = ∀ x. X(x) ↔ ϕ(x)
holds in∆k+1 iff X is interpreted asLTk

. By Rabin’s The-
orem [8], there would be a Rabin automatonM such that
L (M) is the singleton consisting of the tree∆k+1 colored
by LTk

. Such a tree would be non-regular since it would
have infinitely many non-isomorphic subtrees. Because any
non-empty Rabin-recognizable set of trees contains a regu-
lar tree,L (M) could not be a singleton. This is a contradic-
tion and henceLTk

is not MSO-definable in∆k+1. It fol-
lows that the MSO logic of(∆k+1, LTk

) is (strictly) more
expressive than the MSO logic of∆k+1. In the following,
we develop an automaton-based approach to the decision
problem forMTh(∆k+1, LTk

).

5. The automaton-based approach

In this section, we outline an automaton-based proof
method that generalizes the method advocated by Carton
and Thomas in [1], where noticeable properties ofresid-
ually ultimately periodic wordsare exploited to prove the
decidability of the MSO theories of labelled linear order-
ings (a detailed presentation of the proposed method can be
found in [7]).

As a first step, we show how to reduce the decision prob-
lem for MSO theories of colored trees to the acceptance
problem for Rabin tree automata. It is well-known that any



tuple V̄ = (V1, . . . , Vm), with Vi ⊆ [k]∗, can be naturally
encoded by a suitable infinite completek-ary 2m-colored
tree, called thecanonical representation of̄V . Let us de-
note bySV̄ the canonical representation ofV̄ . Rabin’s The-
orem [8] establishes a strong correspondence between MSO
formulas satisfied by(∆k, V̄ ) and Rabin tree automata ac-
ceptingSV̄ : for every formulaϕ(X̄), we can compute a Ra-
bin tree automatonM (and, conversely, for every Rabin tree
automatonM , we can compute a formulaϕ(X̄)) such that
∆k ² ϕ[V̄ ] iff SV̄ ∈ L (M). Let us denote byAcc(SV̄ ) the
problem of deciding whether a given Rabin tree automaton
recognizesSV̄ . We have that

MTh(∆k, V̄ ) is decidable iff Acc(SV̄ ) is decidable.

The problemAcc(SV̄ ) is known to be decidable for any
regular colored treeSV̄ (this follows from the decidabil-
ity of the emptiness problem for Rabin tree automata and
from their closure under intersection [8]). In the following,
we will extend the class of colored trees for which the ac-
ceptance problem turns out to be decidable. We introduce
the class ofresidually regular treesand we solve the accep-
tance problem for such a class by reducing residually regu-
lar trees to equivalent regular colored trees (according to a
suitable notion of tree equivalence).

We preliminarily introduce some tools for manipulating
colored trees. For every pair of fullk-ary m-colored trees
S1 andS2 and for every colorc ∈ [m], the concatenation
S1 ·c S2 is the tree resulting from the simultaneous substitu-
tion of all thec-colored leaves ofS1 by S2. The operator·c
is not associative; thus, we assume that it associates to the
left. We note that by concatenating a full tree toS, we al-
ways obtain a treeS ′ that extendsS. Hence, we can easily
generalize the definition to the case of infinite concatena-
tions. We callfactorizationany finite or infinite concatena-
tion of the formS0 ·c0 S1 ·c1 . . . (we denote infinite concate-
nations by

∏
i∈N(Si)ci ). A factorization is said to beregu-

lar if eachSn is either a finite or a regular full tree and there
are two positive integersp andq (called respectivelypre-
fix andperiod) such that, for everyn ≥ p, cn = cn+q and
Sn = Sn+q. It is easy to prove that a full colored tree is reg-
ular iff it enjoys a regular factorization. This implies that
the MSO theory of any infinite complete colored tree gen-
erated by a regular factorization is decidable.

Now, given an automatonM , we define a suitable equiv-
alence relation≡M between full colored trees such that
(i) ≡M is a congruence (that is, it respects factorizations)
and (ii) it groups together those trees which are indistin-
guishable byM . We preliminarily introduce the notion
of computation ofM . A computationof the automaton
M = ([n], I, E,AP) on a full m-colored treeS is a full
n-colored treeρ such that (i)Dom(ρ) = Dom(S) and
(ii) (ρ(u),S(u), ρ(u1), . . . , ρ(uk)) ∈ E for every u ∈
Dom(ρ) \ Fr(ρ).

Definition 2. Given an automatonM = ([n], I, E,AP)
over the alphabet[m], and two fullm-colored treesS1 and
S2, S1 ≡M S2 holds iff, for every computationρ1 of M on
S1, there is a computationρ2 of M onS2 (and vice versa)
such that
1. (S1(ε), ρ1(ε)) = (S2(ε), ρ2(ε)), namely, the colors

and the states at the roots of the trees are the same;
2. {Inf (ρ1|u) : u ∈ Bch(S1)} = {Inf (ρ2|v) : v ∈
Bch(S2)}, namely, the states occurring infinitely often
in the branches of the trees are the same;

3. {(S1(u), ρ1(u), Img(ρ1|u)) : u ∈ Fr(S1)} =
{(S2(v), ρ2(v), Img(ρ2|v)) : v ∈ Fr(S2)}, namely,
for every finite branchu of S1, there is a finite branch
v of S2 (and vice versa) such thatS1(u) = S2(v),
ρ1(u) = ρ2(v), andImg(ρ1|u) = Img(ρ2|v).

It is possible to show that≡M is acongruenceof finite
index that groups together those trees which areindistin-
guishableby the automatonM (namely,S1 ≡M S2 implies
S1 ∈ L (M) iff S2 ∈ L (M)) [7].

By exploiting the indistinguishability of equivalent trees,
we will reduce the acceptance problem for a large class
of colored trees (that we will call residually regular trees)
to the acceptance problem for regular colored trees. Intu-
itively, we say that a sequence of finite full colored trees is
1-residually regular if, for every congruence of finite index,
it is congruent to an ultimately periodical sequence of finite
trees (and this sequence can effectively be constructed). We
call residually regular trees those trees that are obtained by
concatenating the trees in a residually regular sequence. We
further extend the notion to leveln by no longer consider-
ing finite trees but leveln − 1 residually regular trees. Let
us formalize such an idea. We denote by[i]l,r either i or
((i− l) mod r) + l, depending on whetheri < l or not.

Definition 3. Givenn ≥ 1, a factorizationS0 ·c0 S1 ·c1 . . .
is ann-residually regular factorizationif
1. for everyi, eitherSi is a finite full tree orn > 1 and we

can provide an(n − 1)-residually regular factorization
of Si,

2. for any congruence≡ of finite index, there exist two
positive integersp andq (calledprefix andpatternof
the factorization with respect to≡) such thatci = c[i]p,q

andSi ≡ S[i]p,q
.

An n-residually regular tree is a tree enjoying ann-
residually regular factorization.

Given a congruence≡ of finite index, we inductively
define regular formsof residually regular factorizations.
The≡-regular form of a1-residually regular factorization∏

i∈N(Si)ci is the tree
∏

i∈N(S ′i)ci , whereS ′i = S[i]p,q
, and

p and q are respectively a prefix and a period of the fac-
torization with respect to≡. For n > 1, a≡-regular form
of ann-residually regular factorization

∏
i∈N(Si)ci is a tree∏

i∈N(S ′i)ci , whereS ′i is eitherS[i]p,q
or a≡-regular form



of an(n − 1)-residually regular factorization ofS[i]p,q
, de-

pending on whetherSi is finite or not, wherep andq are
respectively a prefix and a period of

∏
i∈N(Si)ci with re-

spect to≡. It is easy to verify that a≡-regular form of a
residually regular treeS is a regulartree equivalent toS,
and hence the following theorem trivially follows. The up-
shot of such a result is that infinite complete residually reg-
ular trees enjoy a decidable MSO theory.

Theorem 2. Let M be an automaton over the alphabet
[m],

∏
i∈N(Si)ci be ann-residually regular factorization of

an infinite completem-colored treeS, andS ′ be its≡M -
regular form. We have thatS ∈ L (M) iff S ′ ∈ L (M)
(and thusAcc(S) is decidable).

6. Decidability of the MSO theory of (Tk, L0)

We conclude the paper by exploiting Theorem 2 to de-
cide the MSO theory of(T2, L0) (the proof can be easily
generalized to anyk > 2). By Theorem 1, such a problem
can be reduced to the decidability ofMTh(∆3, LT2). Figure
3 shows the corresponding colored treeST2 , where black-
colored nodes represent the elements of the layerL0. Such
a tree can be easily shown to enjoy a decidable MSO the-
ory by providing a residually regular factorization. A pos-
sible choice for the components of such a factorization is
represented by dashed regions in Figure 3. For convenience
we denote colored trees by terms. For instance, the term
2〈S1,S2,S3〉 denotes the tree obtained by appendingS1,
S2, andS3 to a vertex colored by2. Using a set of three col-
ors{1, 2, 3}, the factorization can be written as

∏
i∈N(Si)3,

where
• S0 = 2〈W,W, 3〉,
• Si+1 = 1〈W, 2, 3〉 ·2 Ri,
• W is the infinite complete ternary1-colored tree

(∆3, [3]∗),
• R0 = 2〈W,W,W〉,
• Ri+1 = 1〈2, 2,W〉 ·2 Ri.

The elements corresponding toL0 are represented by color
2. Now, notice that any congruence≡ of finite index in-
duces an homomorphism from the set of full colored trees
endowed with operator·2 to a finite groupoid. By exploiting
the recursive definition of theRi’s and noticeable properties
of finite groupoids [7], one can easily prove that(Si)i∈N
is an ultimately periodic sequence up to≡ and hence the
above factorization is residually regular.

7. Conclusions

In this paper, we developed an automaton-based
method for deciding the MSO theory of thek-ary to-
tally unboundedω-layered structure. As a by-product
we obtained new uniform decidability proofs for the the-
ories of downward and upward unboundedω-layered

Figure 3. The tree ST2 embedding (T2, L0).

structures. The proposed method uses well-known re-
sults from automata-theory to reduce the decision problem
for the considered MSO theory to the acceptance prob-
lem for Rabin tree automata. It further introduces the class
of residually regular trees, which extends that of regu-
lar trees, and for which the acceptance problem turns out to
be solvable by exploiting a suitable notion of tree equiva-
lence. As a matter of fact, in [7] we exploited the proposed
automaton-based approach to solve the decision prob-
lem for a large set of meaningful relational structures,
including, for instance, the deterministic trees in the Cau-
cal hierarchy [2].
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